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Introduction. If an eigenvalue En of H is degenerate in the familiar sense that

H |ψ) = En|ψ) possesses multiple solutions

then one (i) is motivated to look for one or more simultantaneous observables
that collectively serve to “resolve the degeneracy,” and (ii) expects to encounter
some awkwardness in the associated perturbation theory. That, however, is not
the kind of degeneracy that will concern me here.

Suppose the spectrum of H to be (let us assume) non-degenerate. And
that the physics of the system is such that it is capable of radiative emission/
stimulation: the transition |m) �→ |n) entails emission/absorption of a photon
with angular frequency

νm,n = (Em − En)/�

With our spectroscopes we observe only energy differences, not the spectral En

themselves. What I will call “coincident spectral lines” arise when

νm1,n1
= νm2,n2

and reflect degeneracies within the set of spectral differences. It is those that
interest me (slightly).

For an oscillator the spectrum runs

En = E(n + 1
2 ) : n = 0, 1, 2, . . .

so
Em − En = E(m− n)

and it is immediate that

νm+a,n+a = νm,n :
{
a any integer such that m + a
and n + a are both non-negative

So our problem is in this case trivial (except for the spectroscopist, who has, in
this instance, no idea what state was created by the transition he has observed).
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Even simpler, in many respects, than the oscillator is the particle-in-a-box,
which has a spectrum of the form

En = En2 : n = 1, 2, 3, . . .

Spectral coincidence requires that

m2
1 − n2

1 = m2
2 − n2

2 (1)

and it becomes natural to inquire also after coincidences of higher order

m2
1 − n2

1 = m2
2 − n2

2 = m2
3 − n2

3 = · · ·

(of which the oscillator provides infinitely many examples).

It was my on-going work on aspects of the particle-in-a-box problem that
inspired my casual interest1 in the solutions of the Diophantine equation (1),
and that called again to mind the fact that in the Asim O. Barut Festschrift
issues of Foundations of Physics I had once encountered a little paper dealing
with a related—as will emerge, an intimately related—question. The authors of
that paper2 recall that “. . .Barut once, en passant , asked the question ‘For what
transitions of the hydrogen atom do the spectral lines coincide?” . . .which they
(a physicist and an engineer) proceed very elegantly to solve. My own remarks
owe much to theirs.

The hydrogen spectrum runs

En = E
1
n2

: n = 1, 2, 3, . . .

so the Diophantine equation of interest in that case reads

1
n2

1

− 1
m2

1

= 1
n2

2

− 1
m2

2

(2.1)

Equivalently

(m1n2m2)
2 − (n1n2m2)

2 = (n1m1m2)
2 − (n1m1n2)

2 (2.2)

which is seen to present an instance of (1). Which is why Wyss & Wyss, in
their §2, discuss my problem as preparation for an attack upon theirs.

Simple coincidences for the box problem. Because I have interest also in higher
order coincidences, I have been forced to adjust the notation, but in other
respects my argument proceeds along lines sketched by Wyss & Wyss.

1 See footnote 29 in “Phase space formulation of the quantum mechanical
particle-in-a-box problem” (December ).

2 Daniel W. Wyss & Walter Wyss, “Coincidental spectral lines for the
hydrogen atom,” Foundations of Physics 23, 465 (1993).
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Observe that (1) can be written

(m1 − n1)(m1 + n1) = (m2 − n2)(m2 + n2)

the left and right sides of which must represent distinct organizations of the
factors of what must necessarily be a composite number, which we might in
general write a · b · c · d with the understanding that some of the factors might
be absent (unity) and that any/all might be composite. We then have

m1 − n1 = cd

m1 + n1 = ab

m2 − n2 = cb

m2 + n2 = ad

giving
m1 = 1

2 (ab + cd)
n1 = 1

2 (ab− cd)
m2 = 1

2 (ad + cb)
n2 = 1

2 (ad− cb)

As
{
a, b, c, d

}
range on the natural numbers the m’s and n’s will in some cases

be fractional. We must exclude those cases. Each of the numbers a, b, c and d
is either even (e) or odd (o). Surveying the 24 = 16 possible cases, we find that
we must exclude cases of these four types

{
a, b, c, d

}
is

{
e, e, o, o

}
or

{
o, o, e, e

}
: give fractional m1 and n1{

a, b, c, d
}

is
{
e, o, o, e

}
or

{
o, e, e, o

}
: give fractional m2 and n2

Future work will be simplified if we express the result now in hand as follows:

m1 = | 12 (u1v1 + u2v2)|
n1 = | 12 (u1v1 − u2v2)|
m2 = | 12 (u1v2 + u2v1)|
n2 = | 12 (u1v2 − u2v1)|




(3)

Then
m2

1 − n2
1 = m2

2 − n2
2 = u1u2v1v2 (4)

in all cases, but to avoid fractional m’s and n’s we must

exclude cases of types
{
u1, v1, u2, v2

}
=




{
e, e, o, o

}
{
o, o, e, e

}
{
e, o, o, e

}
{
o, e, e, o

} (5)
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Suppose, for example, that
{
u1, v1, u2, v2

}
=

{
1, 1, 3, 5

}
; we are led then

to 42 − 12 = 82 − 72 = 15, which is in fact the smallest instance of a “simple”
coincidence (and the calculation demonstrates the purpose of the absolute value
bars). The next smallest cases are{

1, 1, 3, 7
}

: gives 52 − 22 = 112 − 102 = 21{
1, 2, 2, 6

}
: gives 52 − 12 = 72 − 52 = 24

The 4! = 24 permutations of
{
u1, v1, u2, v2

}
can be assembled from six

transpositions. Looking serially to those, we find that{
u1, v1, u2, v2

}
{
u2, v1, u1, v2

}
{
u1, v2, u2, v1

}

 generate the same pair

{
v1, u1, u2, v2

}
{
u1, v1, v2, u2

}
}

generate the same other pair

{
v2, v1, u2, u1

}
{
u1, u2, v1, v2

}
}

generate the same yet other pair

except that generally distinct pairs will merge when equalities amongst the u’s
and v’s serve to neutralize the effect of a transposition. Examples tell the story
most simply: look first to{

2, 3, 4, 6
}

{
4, 3, 2, 6

}
{
2, 6, 4, 3

}

 : give 152 − 92 = 122 − 02 = 144

{
3, 2, 4, 6

}
{
2, 3, 6, 4

}
}

: give 152 − 92 = 132 − 52 = 144

{
6, 3, 4, 2

}
{
2, 4, 3, 6

}
}

: give 132 − 52 = 122 − 02 = 144

and then (again) to{
1, 1, 3, 5

}
{
3, 1, 1, 5

}
{
1, 5, 3, 1

}

 : give 42 − 12 = 82 − 72 = 15

{
1, 1, 3, 5

}
{
1, 1, 5, 3

}
}

: give 42 − 12 = 82 − 72 = 15

{
5, 1, 3, 1

}
{
1, 3, 1, 5

}
}

: give 42 − 12 = 42 − 12 = 15
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It is clear that if
m2

1 − n2
1 = m2

2 − n2
2 = N (6)

and if
m1 ≡ λm1

n1 ≡ λn1

m2 ≡ λm2

n2 ≡ λn2




: λ = 1, 2, 3, . . .

then
m2

1 − n2
1 = m2

2 − n2
2 =N

N ≡ λ2N

The transformation just described can be accomplished{
u1, v1, u2, v2

}
�−→

{
u1, v1, u2, v2

}
≡

{
λu1, v1, λu2, v2

}
An examination of cases shows that such an adjustment can never cast an
admissible case into the excluded category, but may (will if λ is even) lift an
excluded case into the admissible category. Every such infinite “tower” can be
considered to be supported by its smallest member (least N).3

Coincidences of higher order. We have already seen by explicit example that
permutational tinkering with the solution (3) of the “simple coincidence”
problem can lead to the identification of triplet solutions. But the smallest
such triplet

112 − 12 = 132 − 72 = 172 − 132 = 120

escapes detection by such means, or at least presents a problem: noting that

120 = 23 · 3 · 5

we confront four possibilities, namely{
2, 2, 2, 15

}
: leads permutationally to 172 − 132 = 120{

2, 2, 3, 10
}

: leads permutationally to 132 − 72 = 172 − 132 = 120{
2, 2, 5, 6

}
: leads permutationally to 112 − 12 = 172 − 132 = 120{

2, 3, 4, 5
}

: leads permutationally to 112 − 12 = 132 − 72 = 232−72

4 = 120

In no individual case (no particular partition of the factors of 120) were we in
this instance led to three solutions . . . though collectively we were led to three
solutions plus a fractional sport.

3 Wyss & Wyss, on the basis of a faulty odd/even analysis, mistakenly
conclude that the “excluded case” problem entails simply that the 1

2 ’s should
be dropped from (3). In place of (4) they therefore obtain

m2
1 − n2

1 = m2
2 − n2

2 = 4u1u2v1v2

which implies that the composite numbers N that support solutions of (6) are
necessarily multiples of 4, which 15 = 42 − 12 = 82 − 72 manifestly is not.
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Look now to this straightforward 6-parameter generalization of (3):

m1 = | 12 (u1v1w1 + u2v2w2)|
n1 = | 12 (u1v1w1 − u2v2w2)|
m2 = | 12 (u1v2w1 + u2v1w2)|
n2 = | 12 (u1v2w1 − u2v1w2)|
m3 = | 12 (u1v2w2 + u2v1w1)|
n3 = | 12 (u1v2w2 − u2v1w1)|




(7)

Automatically

m2
1 − n2

1 = m2
2 − n2

2 = m2
3 − n2

3 = u1u2v1v2w1w2 (8)

in all cases, but the odd/even analysis required to identify and exclude fractional
cases has become tedious (one must examine six objects in each of 26 = 64 cases)
the permutational possibilities have become abruptly more numerous (6! = 720,
resolvable into 15 basic transpositions). Rather than pursuing this topic I will
simply report this result of quick experimentation:{

u1, v1, w1, u2, v2, w2

}
=

{
1, 1, 2, 2, 3, 10

}
generates

132 − 72 = 172 − 132 = 312 − 292 = 120 (9)

We missed 112 − 12, but picked up the unexpected 312 − 292: the “smallest
triple” is actually quadruple!

From coincidences to spectral degeneracy in higher dimension. The physical
condition from which we have proceeded

E(m2
1 − n2

1) = E(m2
2 − n2

2)

can be written
E(m2

1 + n2
2) = E(m2

2 + n2
1)

But this can be read as the statement that two of the eigenvalues of a particle
in a square 2-dimensional box are equal:

Em1,n2 = Em2,n1

The solution of one physical problem has transmuted spontaneously into the
solution of quite another. Note, however, that the problems of higher-order
coincidence and higher-order degeneracy are distinct problems. For example:
from (9) we conclude that

132 + 132 = 172 + 72 = 338

132 + 292 = 312 + 72 = 1010

172 + 292 = 312 + 132 = 1130
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but are told nothing concerning the possible higher-order degeneracy of the
numbers on the right.

I am sure that somebody (Gauss?) has long ago answered this question: In
how many ways can N be written as the sum of two squares, and what are they?
That said, I am reminded that, though I possess a technique for generating high
order coincidences of the form

m2
1 − n2

1 = m2
2 − n2

2 = m2
3 − n2

3 = · · ·

the technique provides no protection from collapse into redundancy, and it
certainly does not provide a sharp answer to the analogous question: In how
many ways can N be written as the difference between two squares, and what
are they?

Lorentz equivalence of coincident spectral lines for the box problem. Whatever
a mathematician may see when he looks at

m2
1 − n2

1 = m2
2 − n2

2

a physicist is certain to see Lorentz invariance, and to observe that there must
exist a Lorentz matrix

L =
(
p q
q p

)
with p2 − q2 = 1

such that

L

(
m1

n1

)
=

(
m2

n2

)

Look to the illustrative case 42 − 12 = 82 − 72: we solve

(
p q
q p

) (
4
1

)
=

(
8
7

)

for p and q and obtain

(
p
q

)
= 1

15

(
4 −1
−1 4

) (
8
7

)

giving

L =


 5

3
4
3

4
3

5
3




which is seen to be in fact a Lorentz matrix, and to do the work intended.
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Hydrogen. Since the letters m and n are now preempted, let equations (2) be
written

1
p2
1

− 1
q2
1

= 1
p2
2

− 1
q2
2

or again
(q1p2q2)

2 − (p1p2q2)
2 = (p1q1q2)

2 − (p1q1p2)
2

where it will be understood that q1 � p1 + 1 and q2 � p2 + 1. To gain access to
the results now in hand we set

m1 = q1p2q2

n1 = p1p2q2

m2 = p1q1q2

n2 = p1q1p2

to obtain m1p1 = n1q1 = m2p2 = n2q2 = p1q1p2q2 whence

q1 =
m1

n1

p1

p2 =
m1

m2

p1

q2 =
m1

n2

p1

To insure that the objects on the left are in fact integers we set p1 = n1m2n2

and obtain
p1 = m1n1m2n2

q1 = m1n1m2n2

p2 = m1n1m2n2

q2 = m1n1m2n2




drop the red factors (10)

where the m’s and n’s are taken to be the result of introducing any admissible{
u1, v1, u2, v2

}
into (3).

Look to an example. In the case
{
1, 1, 3, 5

}
we compute

p1 = −28, q1 = −32, p2 = −56, q2 = 224

(the signs are artifacts) and indeed
1

282 − 1
322 = 1

562 − 1
2242 = 15

50176

From the quadruple coincidence

112 − 12 = 132 − 72 = 172 − 132 = 312 − 292 = 120

we can extract variously

{
m1, n1,m2, n2

}
=




{
11, 1, 13, 7

}{
11, 1, 17, 13

}{
11, 1, 31, 29

}{
13, 7, 17, 13

}{
13, 7, 31, 29

}{
17, 13, 31, 29

}
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from which by (10) we obtain the hydrogenic coincidences

1
912 − 1

10012 = 1
772 − 1

1432 = 120
1002001

1
2212 − 1

24312 = 1
1432 − 1

1872 = 120
5909761

1
8992 − 1

98892 = 1
3192 − 1

3412 = 120
97792321

1
15472 − 1

28732 = 1
11832 − 1

15472 = 120
404452321

1
62932 − 1

116872 = 1
26392 − 1

28212 = 120
6692712481

1
116872 − 1

152832 = 1
64092 − 1

68512 = 120
39473345041

And, of course, each such example can be infinitely replicated by scaling:

p1 �→ p1 ≡ λp1

q1 �→ q1 ≡ λq1

p2 �→ p2 ≡ λp2

q2 �→ q2 ≡ λq2




: λ = 1, 2, 3, . . .

To proceed in the opposite direction—to the “base of the tower”—one factors
out the greatest common divisor of

{
p1, q1, p2, q2

}
. In the preceding example

the GCD’s are all unity, except for GCD[1547,2873,1183,1547]=13, so the
example—thus processed—becomes

unchanged
unchanged
unchanged

1
1192 − 1

2212 = 1
912 − 1

1192 = 120
2393209 (11)

unchanged
unchanged

And (11) might be rewritten

1
172

{
1
72 − 1

132

}
= 1

72

{
1

132 − 1
172

}
= 120

72132172

to emphasize that—quite typically—the Rydberg differences on left and right
stand on different bases. The last of the examples at the top of the page, if
similarly processed, assumes this much less mystifying appearance:

1
292312

{
1

132 − 1
172

}
= 1

132172

{
1

292 − 1
312

}
= 120

132172292312

One can easily think of further questions that might be explored: Do
higher-order degeneracies exist within the hydrogen spectrum? What is the
smallest example? But I have squandered already two afternoons on this topic;
it’s time to get back to serious work.
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ADDENDUM. It occurred to me only belatedly that one can use (for example)
the quadruple coincidence

112 − 12 = 132 − 72 = 172 − 132 = 312 − 292 = 120

in combination with the idea embodied in the last of the preceding equations
to construct a quadruple hydrogenic coincidence:

1
72132172292312

{
1
12 − 1

112

}
= 1

12112172292312

{
1
72 − 1

132

}
= 1

1272112292312

{
1

132 − 1
172

}
= 1

1272112132172

{
1

292 − 1
312

}
= 120

1272112132172292312

I cannot resist the temptation to spell those out in terrifying detail:

1
13907532 − 1

152982832 = 1
11767912 − 1

21854692

= 1
8998992 − 1

11767912

= 1
4934932 − 1

5275272

= 120
234037462748089

More generally:

nth-order box coincidences ⇐⇒ nth-order hydrogenic coincidences

The first of the questions posed at the bottom of the preceding page is thus
resolved , and I think I have in fact presented the smallest such example.

I get the impression, from an hour spent perusing the (intimidating)
number theory shelves, that mathematicians have traditionally been more
interested sums of squares than differences. But Richard Mollin, in §6.2
of his Fundamentals of Number Theory with Applications (), does treat the
subject in some depth. And I encountered somewhere the claim that “every
n not of the form 4k + 2 can be written as a difference of squares,” to which
was appended this corollary: “every odd prime can be written as a difference of
consecutive squares.” Thus 3 = 22 − 12, 5 = 32 − 22, 7 = 42 − 32, . . .but that is
trivial: (n + 1)2 − n2 = 2n + 1 so every odd n (whether prime or not) can be
so expressed. Only Mollin, among the sources I consulted, seemed interested in
the number of such representations, in the general case.
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Miscellaneous number-theoretic doodles. I resent the intrusion of number
theory—an area in which my knowledge is surpassed by many a high school
student—into my thought about “more serious” matters. But I can’t seem to
let go of the subject discussed recreationally in the preceding pages. All of
the material presented there is elementary, but I feel that the simplicity of it
all was in some respects not made as plain as it could/should be, and that in
other respects it would have been helpful to set the points at issue in broader
context. I look upon the following paragraphs as a cemetary for my thoughts
on this subject.

Let a, b, c and d be natural numbers such that

a− b = c− d (12.1)

Divide by abcd and obtain

1
A

− 1
B

= 1
C

− 1
D

(12.2)

with
A = · bcd
B = a · cd
C = ab · d
D = abc ·

Multiplication by ABCD gives back an equation of the original design

a′ − b′ = c′ − d′

with
A = · bcd
B = a · cd
C = ab · d
D = abc ·

a′ = ·BCD = (abcd)2 · a
b′ = A · CD = (abcd)2 · b
c′ = AB ·D = (abcd)2 · c
d′ = ABC · = (abcd)2 · d

Each of the equations (12) supports a tower of similar equations, got by

{
a, b, c, d

}
�→

{
λa, λb, λc, λd

}
else

{
A,B,C,D

}
�→

{
λA, λB, λC, λD

}
and each such tower rests on a base, got by setting

λ = g.c.d
{
a, b, c, d

}
else λ = g.c.d

{
A,B,C,D

}
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And the upshot of the preceding line of argument is that (12.1) and (12.2) are
interconvertible: an instance of either supplies an instance of the other.

Preceding remarks continue to hold if one assigns specialized interpretations
to a, b, c and d. Suppose, for example, that we set

a = an

b = bn

c = cn

d = dn

From instances of
an − bn = cn − dn (13.1)

we then obtain instances of

1
An

− 1
Bn

= 1
Cn

− 1
Dn

(13.2)

with
A = · bcd
B = a · cd
C = ab · d
D = abc ·

In the text my remarks were (for physical reasons) restricted to the case n = 2.

Number theorists have much to say about the conditions under which N can
be represented

N = sum of two squares

and also about a population of related problems:

N = sum of n > 2 squares
N = sum of two cubes
N = sum of two nth powers
N = sum of n > 2 cubes nth powers

Fermat’s Last Theorem (sum of two nth powers is never an nth power if n > 2)
falls into this broad class. The collateral problem of greater interest to me:
Under what conditions can one write

N = sum of two nth powers in more than one way

Suppose we had an instance of

rn + sn = tn + un (14)
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We are then supplied with (unless t = u) two instances of (13.1)

N1 = rn − tn = un − sn and N2 = rn − un = tn − sn

and (therefore) with two instances also of (13.2). Conversely, from any instance
of (13.2)—or of (13.2)—one can extract one (!) instance of (14).

We possess a technique for mindlessly generating instances of (13.1) in the
case n = 2, therefore for mindlessly generating instances of

r2 + s2 = t2 + u2 (15)

The technique permits one to construct instances also of higher order difference
coincidences

a2 − b2 = c2 − d2 = e2 − f2 = · · ·
but each such equality gives rise generally to a different instance of (15).
Conversely,

r2 + s2 = t2 + u2 = v2 + w2

would give rise generally to six different instances of a2 − b2 = c2 − d2 but to
no difference coincidences of higher order.

I describe in modified (more easily extendable) notation the construction that
led to (7):

m(p1, q1) = 1
2 (p1 + q1)

n(p1, q1) = 1
2 (p1 − q1)

m12(p1, q1, p2, q2) = m(p1p2, q1q2)
n12(p1, q1, p2, q2) = n(p1p2, q1q2)
m22(p1, q1, p2, q2) = m(p1q2, q1p2)
n22(p1, q1, p2, q2) = n(p1q2, q1p2)

m13(p1, q1, p2, q2, p3, q3) = m(p1p2p3, q1q2q3)
n13(p1, q1, p2, q2, p3, q3) = n(p1p2p3, q1q2q3)
m23(p1, q1, p2, q2, p3, q3) = m(p1q2p3, q1p2q3)
n23(p1, q1, p2, q2, p3, q3) = n(p1q2p3, q1p2q3)
m33(p1, q1, p2, q2, p3, q3) = m(p1q2q3, q1p2p3)
n33(p1, q1, p2, q2, p3, q3) = n(p1q2q3, q1p2p3)

...

One can ascend from third order to second by setting p3 = q3 = 1. Et cetera.
Automatically

m2
11 − n2

11 = p1q1

m2
12 − n2

12 = m2
22 − n2

22 = p1q1p2q2

m2
13 − n2

13 = m2
23 − n2

23 = m2
33 − n2

33 = p1q1p2q2p3q3

...
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One can avoid the winnowing required to eliminate fractional and/or redundant
m’s and n’s by taking the p’s and q’s to be distinct odd primes, which would
certainly be acceptable if one’s objective were (as mine was) to establish the
existence of coincidences of arbitrarily high order. Example:

m13(1, 3, 5, 7, 11, 13) = 164
n13(1, 3, 5, 7, 11, 13) = −109
m23(1, 3, 5, 7, 11, 13) = 136
n23(1, 3, 5, 7, 11, 13) = −59
m33(1, 3, 5, 7, 11, 13) = 128
n33(1, 3, 5, 7, 11, 13) = −37

The signs would have been eliminated if we had installed | bars, and in all cases
we have

m2 − n2 = 15015

Corollaries of this result are

1642 + 592 = 1362 + 1092 = 30377

1642 + 372 = 1282 + 1092 = 28265

1362 + 372 = 1282 + 592 = 19865

and
1

13625921282372

{
1

1092 − 1
1642

}
= 1

164210921282372

{
1

592 − 1
1362

}
= 1

164210921362592

{
1

372 − 1
1282

}
= 15015

461472599574018990800896

If we kill the last p3 and q3 we obtain

m13(1, 3, 5, 7, 1, 1) = 13
n13(1, 3, 5, 7, 1, 1) = −8
m23(1, 3, 5, 7, 1, 1) = 11
n23(1, 3, 5, 7, 1, 1) = −4
m33(1, 3, 5, 7, 1, 1) = 11
n33(1, 3, 5, 7, 1, 1) = −4




: 132 − 82 = 112 − 42 = 105

and if we kill also p2 and q2 we obtain the even more redundant output

m13(1, 3, 1, 1, 1, 1) = 2
n13(1, 3, 1, 1, 1, 1) = −1
m23(1, 3, 1, 1, 1, 1) = 2
n23(1, 3, 1, 1, 1, 1) = −1
m33(1, 3, 1, 1, 1, 1) = 2
n33(1, 3, 1, 1, 1, 1) = −1




: 22 − 12 = 3
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One need not kill the last arrivals, as the following example makes clear:

m13(1, 1, 5, 7, 11, 13) = 73
n13(1, 1, 5, 7, 11, 13) = −18
m23(1, 1, 5, 7, 11, 13) = 71
n23(1, 1, 5, 7, 11, 13) = 6
m33(1, 1, 5, 7, 11, 13) = 73
n33(1, 1, 5, 7, 11, 13) = +18




: 732 − 182 = 712 − 62 = 5005

Such examples become joined when one brings into play permutations of the
arguments.

G. H. Hardy told a story, repeated on page 312 of Robert Kanigel’s The Man
Who Knew Infinity: A Life of the Genious Ramanujan (), to this effect:
Hardy noticed that the number of the taxi that took him to visit the dying
Srinivasa Ramanujan, one day in , was 1729. “Rather a dull number”
he remarked, to which Ramanujan responded “No, Hardy. It is the smallest
number expressible as the sum of two cubes in two different ways.” What he
had in mind, and had recorded in his notebooks years previous, is that

1729 = 123 + 13 = 103 + 93

Implications are that

728 = 93 − 13 = 123 − 103

999 = 103 − 13 = 123 − 93

I know, however, of no way to generate coincident cubic differences, and
certainly of no way to generate them ad infinitum. It does not seem to help
much that

a2 − b2 = (a− b)(a + b)

generalizes to become4

a3 − b3 = (a− b)(a2 + ab + b2)

a4 − b4 = (a− b)(a3 + a2b + ab2 + b3)
...

Nor does a4 − b4 = (a2 − b2)(a2 + b2) provide access to the methods that
served us so well in the case n = 2. Richard Crandall reports that

635318657 = 1334 + 1344 = 1584 + 594

is an example that was known already to Euler, and that there are known to
be infinitely many such double coincidences, but that the question of whether
triple coincidences exist remains open.

4 See the first equations in G. S. Carr’s A Synopsis of Results in Pure &
Applied Mathematics (), which had exerted such a profound effect on
Ramanujan’s early mathematical development.


